تدریس SAP2000- مدرس سپ



پروژه آماده طراحی سوله (پروژه دانشجویی درس فولاد پیشرفته)

پروژه آماده طراحی سوله (پروژه دانشجویی درس فولاد پیشرفته)

فروش پروژه آماده دانشجویی درس فولاد پیشرفته ، طراحی سوله همراه با جرثقیل

به همراه فایل گزارش و طراحی دستی و بارگذاری همه ی قسمت ها و بخش های سوله و فایل سپ ۲۰۰۰

طراحی سینه بند – طراحی لاپه (Purlin) – طراحی میل مهار (sagrod) – طراحی تیر آبچکان – کنترل ستون گله (Gable Column)
– طراحی تیر حمال جرثقیل – طراحی تیرهای فرعی طولی (Strutt) – کنترل تیر (Rafter)
– کنترل ستون طراحی اتصالات
– طراحی اتصال تیر به تیر رأس قاب – طراحی اتصال تیر به ستون – طراحی جوش اتصال بال های ستون به جان
– طراحی جوش اتصال بال های تیر به جان پروژه های دیگر

برای سفارش محصول می توانید به شماره: ۰۹۳۸۲۹۰۴۸۰۰ پیامک دهید یا در واتساپ پیغام ارسال کنید


تحلیل پوش اور در نرم افزار SAP2000

آموزش گام به گام روش انجام تحلیل پوش آور (استاتیکی غیرخطی) در نرم افزار SAP2000

nonlinear static procedure analysis

به صورت تصویری در ۶۸ اسلاید

  •  ۴٫۵۸ مگابایت


دانلود نشریه۳۲۵ ضوابط طرح و محاسبه ساختمان های صنعتی فولادی 

حجم: ۷٫۴ مگابایت | تعداد صفحات:  ۲۸۶ | سال انتشار۸۵


دانلود راهنمای جامع AISC طراحی قاب هایی با مقطع متغییر

حجم: ۱٫۷ مگابایت | تعداد صفحات:۲۲۵  |  سال انتشار: ۲۰۱۱


دانلود دستنامه ی طراحی سوله (به زبان انگلیسی)

حجم: ۲۸ مگابایت | تعداد صفحات:۳۰۲  |  سال انتشار: ۲۰۱۵

این دستنامه به بررسی همه ی اجزای سوله می پردازد


دانلود دفترچه محاسبات سوله

حجم: ۵٫۵ مگابایت | تعداد صفحات:۷۹  |  سال انتشار: —

فهرست دفترچه محاسبات:

طراحی کلیه اتصالات سازه به صورت دستی
طراحی تیر حمال و نشمین جرثقیل در نرم افزار
طراحی دستی لاپه ها بر اساس نشریه ۲۱۶معاونت نظارت راهبردی ریاست جمهوری
مهور
محاسبه دستی و اصلاح ضریب طول موثر ستونها
کنترل جابجایی جانبی و قائم
کنترل پدیده آپلیفت
طراحی فونداسیون در نرم افزار
طراحی دستی کلاف رابط
برآورد وزن و قیمت آهن آلات مورد نیاز
کنترل کفایت تکیه گاه جانبی جهت جانمایی سینه بندها
کنترل کفایت موضعی اعضا
کنترل واژگونی سازه
طراحی دستی میل مهارها

آموزش ساخت سوله در SAP


امر طراحی سوله کاریست تخصصی و بسیار دقیق، فاکتورهای مهمی در طراحی دخیل هستند که بی‌توجهی به آنها می‌تواند هم هزینه گزافی را به سازنده تحمیل کند که صرفه اقتصادی را زیر سؤال می‌برد و هم ممکن است نتیجه مع داده و استحکام و پایداری سازه را تضعیف نماید و موجب ایجاد حوادث جبران ناپذیر گردد. برای طراحی یک سوله اطلاعات زیر مطلوب است:

  • بارگذاری برای بار مرده، بار برف و بار نامتقارن
  • بارگذاری جانبی سوله شامل بار باد و زله
  • بارگذاری جرثقیل برای سوله، سؤال: آیا جرثقیل در طراحی سوله در نظر گرفته شود یا خیر؟ (بله:محاسبه بار دینامیکی جرثقیل)
  • ضریب منطقه‌ای، رفتار و اهمیت برای سوله
  • ارتفاع جانبی سوله و ارتفاع دیوار
  • دهانه و طول سوله
  • تعداد قاب‌های طولی سوله
  • درز انقطاع
  • محاسبه ضریب طول مؤثر
  • درصد شیب سقف سوله
  • پوشش مورد نظر سقف سوله (ساندویچ پنل یا ورق گالوانیزه وتوری مرغی)
  • تنش مجاز خاک منطقه موردنظر و نوع زمین ساختگاه
  • نحوه کنترل جابجایی
  • طراحی اتصالات و بیس پلیت برای سوله
  • طراحی تیر حمال جرثقیل
  • طراحی پرلین‌ها به کمک نرم‌افزار
  • طراحی میل مهار(sag rod)
  • ارائه طرحی با حداقل دورریز ورق
  • ارائه دفترچه محاسبات کامل سوله

کنترل کفایت اعضاء در برابر نیروهای موضعی و تعبیه سخت‌کننده در صورت نیاز راهنمایی جهت انتخاب صحیح مقاطع غیر منشوری با توجه کاربری سوله ساختمان سوله شامل ستون، رفتر، پرلین، استرات، وال پست، بادبند، سگراد، سینه بند، پیچ و مهره و سایبان می‌باشد.


نکاتی پیرامون طراحی سوله

سوله‌های سنگین طراحی شده یا ساخته شده:

۱. گاهی اوقات سازندگان علاقه‌مند هستند به دلایلی همچون کاهش دور ریزورق، سود بیشتر و یا احساس نا امنی از سوله‌هایی که می‌خواهند بسازند مقاطع را نسبت به طرح ارائه شده قوی تر بسازند. مثلاً ارتفاع جان درپای ستون و تعداد بولتها را افزایش می‌دهند ویا عرض بالها را زیاد تر می‌کنند و یا طول ماهیچه تیر را زیادتر می‌گیرند. در این میان اگرچه کل طرح قوی تر شده اما باید به نکاتی هم توجه کرد:

- با توجه به اینکه میزان جذب نیرو در قاب خمشی بر اساس ماتریس سختی بوده و ممکن است با قوی تر شدن یک قسمت، نیروی بیشتری هم جذب شود، لازم است بر این اساس کنترل‌هایی صورت گیرد تا افزایش نیروی داخلی عضو نسبت به نیروی دیده شده در طراحی خطرساز نباشد. مثلاً جذب لنگر بیشتر در انتهای تیر، نیازمند پیچ‌های بزرگتری دراتصال تیر به ستون می‌تواند باشد. با جوش دادن و تقویت بیش از حد پای ستون با استیفنرهای متعدد می‌توان باعث جذب لنگر در یک اتصالی که مفصلی فرض شده گردید و موجب گسیختگی در پای ستون یا ورق کف ستون یا بولتها و یا واژگونی فونداسیون شد.

پیش بینی سوله برای آینده:

۱. اصولاً تجربه نشان داده است اضافه شدن یک سوله (دوقلو یا بچه سوله و.) به سوله موجود یا در حال طرح معمولاً نه تنها باری به آن اضافه نمی‌کند بلکه با توجه به مهار آن وایجاد لنگرهای برعکس در ستون آن هم از نظر تنش و هم از نظر جابجایی وضعیت آن را بهتر می‌کند. اما در مورد سوله‌هایی که قرار است به صورت دوقلو یا چند قلو یا با یک بچه سوله طراحی شوند، اما فعلاً کارفرما قصد دارد که یکی از آن‌ها را بسازد و بعدها در صورت تأمین مالی بخش دیگر را بسازد، قضیه فرق می‌کند و از آنجا که در چند سالی که این سوله به صورت تنها استفاده می‌شود، چنانچه مورد فشار بار باد ماکزیمم یا برف که برای آن طرح شده قرار گیرد، ممکن است عملکرد دیده شده در طرح را نداشته و تخریب گردد.

۲. در این موارد اولاً بایستی سوله‌ای که فقط قرار است ساخته شود را نیز جداگانه مدل نمود و آن را مورد بررسی و ارزیابی قرار دارد. چنانچه تنش‌های این سوله به تنهایی بیشتر از حد مجاز است لازم است آن را تقویت نمود، اما اگر صرفاً در حالت تنها جابجایی آن قدری از حد مجاز فراتر رود به نظر می‌رسد می‌توان تا حدودی خاص که باید به تأیید دستگاه‌های زیربط برسد و این میزان بستگی به تعهد کارفرما در مورد ساخت قسمت نهایی سوله در مدت زمان محدود دارد می‌توان این جابجایی را نادیده گرفت.

تحلیل دو بعدی یا سه بعدی:

۱. آقای دکتر ازهری روش دو بعدی را ترجیح داده‌اند.

۲. آقای طاحونی تحلیل با تحلیل سه بعدی موافق تر هستند.

۳. تحلیل سوله به صورت سه بعدی پیچیده می‌شود و به مهاربندهای سقف بستگی پیدا می‌کند و حتی اعضای فشاری هم نیرو می‌گیرند.

۴. برای کنترل جابجایی سوله و استفاده از ظرفیت به هم پیوستگی قابها نیاز به مدل سه بعدی هست.

۵. در مدل سه بعدی از نصف بودن چشمه باربر قابهای اول و آخر نسبت به سایر قابها و وجود ستونهای باد و تیر نعل درگاه و کلاف و حتی دیوار و گاهی کوچکتر بودن فاصله دو قاب اول و دوم برای کاهش جابجایی می‌توان استفاده کرد.

۶. می‌توان از بادبند در قابهای ابتدا و انتها برای مهار بیشتر آنها استفاده نمود.

۷. باید فونداسیون‌های این دو قاب برای نیروهای بیشتر باد طراحی شوند.

۸. با توجه به کاهش جابجایی سوله و کاهش اثر −p ممکن است تنشهای سوله از حالت دوبعدی کمتر گردند. اما با توجه به اینکه ممکن است تحلیل خیلی دقیق نباشد و یا در عمل خوب کار نکنند بهتر است برای کاهش تنشها از این روش استفاده نگردد. بلکه صرفاً به خاطر جابجایی از این روش استفاده گردد که خطر خاصی ایجاد نشود.

۹. بهتر است در حالت استفاده از تحلیل سه بعدی برای کنترل جابجایی سوله در قاب دو بعدی جابجایی سوله به عددی مانند دو برابر جابجایی مجاز سوله محدود گردد تا از عملکرد سوله اطمینان حاصل شود.

۱۰. در حالت تحلیل دو بعدی تنش‌های خارج صفحه مانند پیچش ناشی از نیروی طولی جرثقیل یا خمش‌های حول محور ضعیف تیر و ستونها دیده نمی‌شود.

۱۱. در هر حال تحلیل سه بعدی واقعی تر است و در واقع علاوه بر بادبندهای سقف به دلیل اتصال Zها به یکدیگر و پوشش سقف توسط ورق موجدار، اصولاً قابهای سوله به هم مرتبط هستند و با هم کار می‌کنند.

ترکیبات بار

برخی افراد قبل از بارگذاری سوله مقایسه‌ای بین برش پایه ناشی از زله و باد می‌کنند و فقط نیرویی که برش پایه بیشتری دارد را به سازه اعمال می‌کنند. (معمولاً بار باد) در حالیکه اصولاً این دو تفاوتهای زیادی هم دارند، از جمله:

الف - بار زله صرفاً به مراکز جرم به صورت نقطه‌ای وارد می‌شود و به هر کجا که جرم وجود دارد. اما بار باد به هر کجا که پوششی وجود دارد اعمال می‌شود و توزیع آن به شکل خطی است.

ب - اصولاً توزیع بار زله در سوله‌های متقارن، در دو طرف مشابه است. مثلاً در تیرها و ستونهای دو طرف اما در مورد بار باد در یک طرف، فشار و در یک طرف مکش داریم و در ستون سقف شیبدار مکش‌هایی هم به سمت بالا داریم که عکس العمل‌های ویژه‌ای را در اعضای قاب و تکیه گاه‌ها حاصل می‌کند.

ج - در ترکیبات بارگذاری ترکیبی مانند 0.5WL +DL+SL داریم که در مقایسه با ترکیب بار EQ +DL+SL (که بار زله بدون ضریب است) قابل مقایسه نیستند.

اما در مورد ترکیب بار EQ +DL+SL به نظر می‌رسد قدری دست بالا باشد. چطور است که آیین‌نامه همزمانی بار برف ۵۰ ساله و باد ۵۰ساله را ناچیز دانسته ولی همزمانی بار برف و زله را محتمل می‌داند. در حالیکه باد خیلی محتمل تر از زله است: آیین‌نامه بارگذاری ایران سال ۸۵ ص۸۳ –بند ۶-۸-۱

(EیاW) +D

(E یا W) 0.5S)+یا+(Lr L+D

(E یا W0.5) S)+یا+(Lr L+D

آیین‌نامه فولاد ایران ویرایش جدید:

[(E یا W (L+D]0.75 (E یا W (D]0.75

جالب است که در اینجا ضریب ۰٫۵ برای همزمانی بار باد و برف هم منظور شده است و ثانیاً ضریب ۱- به عنوان بار باد منظور گشته در صورتی که این ضریب در ترکیبات بار وارد شود مسائل جالبی به وجود می‌آید. از جمله اینکه مکش‌های وارد بر سقف به صورت فشار درآمده و هم جهت با بار برف و بار مرده می‌شوند و مکش ناشی از بار باد (با ضریب شکل مربوط به خودش) به صورت فشار درآمده و فشار وارد بر سازه به شکل مکش در می‌آید. البته در ویرایش قبلی آیین‌نامه فولاد این اشتباهات وجود نداشته است.

اثرات تغییرات LTB وK تیر و ستون بر تنش مجاز آنها:

اصولاً هم تیر و هم ستون در سوله از جنس تیر ستون هستند و در هر دوی آنها عموماً ویژگی تیر غالب است تا ستون به دلیل سبک بودن بارها، عمده تنش ایجاد شده در اعضا به شکل خمشی است نه فشاری. مگر در مواردی که ستون دارای جرثقیل سنگینی باشد که درصدی از تنش هم ناشی از نیروی محوری خواهد شد؛ لذا اصولاً بحث بیش از حد دربارهٔ K خیلی در سوله‌ها مصداق پیدا نمی‌کند و اصولاً عددی بین ۱٫۳ تا ۲ را می‌توان به عنوان K ستون به کار برد و تأثیر چندانی بر ابعاد سازه نخواهد گذاشت. اما در مورد گزینه LTB نرم‌افزار از این عدد در دو جا استفاده می‌کند. اولاً عدد LTB کوچکتر از ۱ به این معنی است که طول مهار نشده ستون کاهش داده می‌شود. مثلاً اگر LTB ستون ۰٫۵ تعریف شود و K آن ۱٫۳:

ضریب لاغری:

یعنی بر شکل کمانش عضو و معادله کمانش آن تأثیر می گذارد و از آنجا بر تنش مجاز فشاری. تا این‌جای قضیه چندان دور از واقعیت نیست، اما LTB به عنوان فاصله مهارهای جانبی بال فشاری هم برای برنامه شناخته می‌شود و از آنجا ممکن است در تعیین تنش مجاز خمشی تأثیر فراوانی داشته باشد. در حالیکه در بسیاری حالات قوطی به کار رفته در دل ستون یا در وسط جان اجرا می‌شود و یا چسبیده به بال کششی و استفاده از آن به عنوان مهار جانبی بال فشاری در محاسبات صحیح نیست. البته راه حل ساده پیشنهاد شده در این رابط جوش دادن یک ورق تقویت جان بین بال فشاری و قوطی مهاربند می‌باشد.

فونداسیون‌های گیردار:

باید کف ستونها تحت همه حالات بار طراحی شوند (و بولتها) چون ممکن است در یک حالت e بزرگ باشد ولی نیروها کم باشند و در حالتی دیگر e متوسط باشد ولی کشش یا فشار در ستون زیاد باشد.

همچنین در صورتی که بخواهیم از فونداسیون منفرد استفاده کنیم، ناپایدار است. چرا که نهایت e که می‌تواند از بزرگتر باشد تا قسمتی از پی تحت کشش بیفتد است و از آن به بعد پی ناپایدار می‌شود و همان‌طور که می‌دانیم همیشه در حالت گیردار e بزرگتر از است. چون معمولاً لنگر زیادی در پای ستون وجود دارد و نیروی محوری کمی بنابراین e= همیشه عدد بزرگی است.

ضمناً در صورت استفاده از فونداسیون نواری روی پیچش شناژهای رابط طولی نمی‌توان حساب کرد چون بار باد همزمان به همه قابها وارد می‌شود (همینطور سایر بارها) و چنانچه دهانه سوله بزرگ باشد فونداسیون‌های نواری عرضی هم شاید خیلی کارساز نباشد. چون اولاً باید آنها را طراحی نمود (آرماتور و بلندشدگی آنها را) و ثانیاً تغییر شکل آنها باید بررسی شود که از حد مجاز بیشتر نباشد. ضمناً همان تغییر شکل (چرخش فونداسیون) هر چقدر هم که ناچیز باشد، باید اثر آن را برروی جابجایی کنیم سوله بررسی کرد. ضمناً معمولاً وصل کردن فونداسیون به صورت نواری بسیار پرهزینه است.

گیرداری فونداسیون:

۱. اصولاً هیچ دیتایلی برای فونداسیون صرفاً مفصلی و گیردار نیست.

۲. چگونگی اعمال گیرداری نسبی در فایل و دتایل اجرایی آن نیاز به تحقیق دارد مثلاً نمی‌توان گفت چه اتصالی ۲۵٪گیرداری دارد. اما در کل می‌توان گفت هر اتصالی حداقل ۱۰٪ گیرداری را دارد که از ظرفیت آن می‌توان برای کنترل جابجایی سوله استفاده کرد. اما باید بولت‌ها و فونداسیون را هم بر آن اساس طراحی نمود.

۳. گاهی گیرداری نسبی درمورد باری مثل برف تعریف می‌شود ولی در مورد باری مثل باد نسبت‌های بدست آمده بین لنگر جذب شده در حالت گیردار و نیمه گیردار متفاوت است.

اثر دیوارهای جانبی سوله:

۱. در واقعیت دیوارها مهارکننده جانبی ستون‌های سوله و نگهدارنده سوله در مقابل باد هستند. هرچند در تئوری ما فرض می‌کنیم که بار باد از دیوار به سوله منتقل می‌شود. اما در واقع دیوار خود به تنهایی بار باد را تحمل می‌کند و آن را به زمین منتقل می‌کند و اصولاً وجود دیوار در اطراف سوله به کاهش جابجایی آن کمک می‌کند.

۲. از آنجا که با افزایش ارتفاع دیوار از ۵–۶ متر هم سقوط آجر و مصالح در هنگام زله و تخریب دیوار به پایین وجود دارد و هم وزن سازه افزایش یافته و باعث می‌شود سوله سنگین تر گردد به نظر می‌رسد بهتر است از کاربرد آجر و دیوار در ارتفاع بیشتر خودداری شود و به جای آن از مصالح سبک و پوشش‌های نوین استفاده نمود.

وم کاربرد شناژهای رابط در عرض سوله:

اگرچه مورد خاصی در مورد اتصال عرضی فونداسیون‌های منفرد سوله درعرض در آیین‌نامه‌ها ذکر نشده اما به برخی از محاسن که در ذیل می‌آید مهندسان را ترغیب می‌کند که به صورت دو در میان یا سه در میان از این کمربندها استفاده کنند:

الف- این کلافها به عنوان مهاری مطمئن برای آرماتور و قالب بسته شده قبل از بتن ریزی لحاظ می‌شوند و از تکان خوردن بیش از حد آرماتورها جلوگیری می‌کنند.

ب- در هنگام زله باعث حفظ انسجام سیستم پی و سوله و جلوگیری از رانش یکی از فونداسیون‌های به تنهایی می‌گردند.

ج- با توجه به وجود درصدی از گیرداری در پای ستون و تغییرشکلی که ممکن است در اثر آن در پی حاصل شود، این شناژها این تغییرشکل و چرخش را محدود می‌کنند.

کنترل کمانش‌های موضعی:

۱. طبق آیین‌نامه فولاد ایران و سایرمراجع بین‌المللی لازم است علاوه بر کنترل تنش در اعضای سازه‌ای فولادی که از تیر ورق ساخته می‌شوند. نسبت‌های عرض به ضخامت نیز برای بال و جان اعضا از حدود مشخصی نکند تا از کمانش موضعی جلوگیری گردد.

۲. به نظر می‌رسد با کاهش تنش موجود به مجاز اعضا می‌توان این حالت را نادیده گرفت که جای بحث دارد. البته این موضوع در آیین‌نامه فولاد ایران آمده است. می‌توان با یک مثال قدری در این مورد توضیح داد:

فرض کنیم نسبت تنش در یک ستون با ابعاد جان۰٫۶×۹۰ و ابعاد بال ۱×۲۰ کمتر از یک شده است. اما به دلایلی طراح یا سازنده مایل است از عرض بال ۲۵ به جای ۲۰ استفاده کند؛ که به نظر می‌رسد با وجودی که از نظر کمانش موضعی محدودیت وجود دارد. اما چون از ورق قوی تری استفاده شده و در کل تنش موجود به مجاز در آن عضو کمتر می‌شود، مانعی نداشته باشد. اما اگر از ابتدا طراح نسبت تنش کوچکتر از ۱ را با مقطع دارای بال ۱×۲۵ بدست آورد، این طراحی اشتباه است.

۳. در ویرایش جدید آیین‌نامه فولاد ایران (مبحث دهم- جدول ۱۰-۱-۲-۱ ص۲۵) حداکثر نسبت پهنای آزاد به ضخامت برای جان ≤ قطعات به صورت ذکر شده که ضخامت‌های زیادی را برای جان قطعات نتیجه می‌دهد و به نظر می‌رسد اشتباه چاپی باشد. چرا که این محدودیت که به عنوان مرز مقاطع غیر فشرده و مقاطع با اجزای لاغر معرفی شده در خود این کتاب در چند جای دیگر نقض شده و به صورت ذکر گردیده است. از آن جمله در صفحات۵۲ و۶۷ و۶۸

همچنین در ویرایش قبلی مبحث ۱۰ از رابطه استفاده شده است. ص۱۹

مجاورت ستونهای باد با قوطی‌های سقف:

۱. هدف انتقال بار باد به زمین است .(به کمک رفتار خرپایی)

۲. چشمه باربر قاب اول و آخر نصف سایر قاب هاست.

جرثقیل:

۱. بایستی نوع پل جرثقیل (تک پل یا دو پل) در ابتدا مشخص گردد. چون این گزینه به سه عامل مربوط می‌شود: یکی فاصله چرخ‌های راهبر پل، دوم وزن پل و سوم محل حرکت ارابه که در حالت تک پل زیر پل و در حالت دو پل روی آنها می‌باشد.

۲. لازم است پل بر اساس تنش مجاز، اثر خستگی، خیز (و پیش خیز لازم) و کمانش موضعی طرح شود.

۳. برای طراحی کامل و دقیق یک سوله که دارای جرثقیل است، بایستی وزن پلها، وزن ارابه، فاصله چرخهای ارابه و راهبر پل معلوم باشد و بایستی این اعداد در نقشه‌ها ذکر شود تا از مسائل و خطرات بالقوه آتی جلوگیری گردد. مثلاً اگر سازنده وزن پل بیشتری را ارائه کند یا فاصله چرخ‌های راهبر را کمتر کند، خطرناک خواهد بود.

۴. بهتر است خیز پل و حماله براساس رابط کنترل شود یا

باید توجه نمود که نوع نشیمن جرثقیل نیز خیلی مهم است. اگرچه استفاده از نشیمن کربل که به ستون جوش داده می‌شود اصولاً مطلوب تر است (چون عضو بالای آن ضعیف نمی‌شود)اما در مواردی که نیروی زیادی به نشیمن جرثقیل وارد می‌شود بهتر است از ستون‌های لبه دار استفاده کرد تا خطر شکستگی کربل یا جوش آن به ستون برطرف گردد.

تغییر ابعاد فایل و تنش اعضا در ورژن‌های مختلف برنامه

یکی از دلایل تغییرات تنش اعضا در انتقال فایل SAP از ورژنی به ورژن دیگر تغییر فاصله نقاط خروجی یا نقاط check تنش است. (output stations) که در ورژنهای پایینتر از ۹ فقط توسط کاربر نسبت داده می‌شد، اما در ورژن‌های جدید علاوه بر نقاط قبلی در نقاط تغییر شیب مقاطع و اتصال اعضای دیگر به یک عضو و ورود بارهای متمرکز نیز به صورت پیش فرض برنامه کنترل تنش را انجام می‌دهد که ممکن است در همان نقطه عضو ضعیف باشد: سوله

در برخی از نسخه‌های SAP برنامه به طور اتوماتیک در مورد اعضایی که ترکیبات بار برای آنها شامل باد یا زله می‌شود تنش‌های مجاز را ۳۳٪ افزایش می‌دهد، اما برخی از نسخه این کار را نمی‌کنند و در کل نسبت تنش بیشتری را نشان می‌دهند. نویسنده:امید خالدان


نصب سوله

معمولاً اتصال اغلب قسمتهای یک سوله بوسیله پیچ و مهره و در مواردی نیز از طریق جوش انجام می‌گیرد. به دلیل اینکه تمامی قطعات سوله در کارخانه ساخت بالا ساخته می‌شوند و بیشتر اتصالات از نوع فلنجی بود معمولاً عملیات نصب در چند روز خاتمه می‌یابد و این امر باعث صرفه جویی فراوان در وقت و هزینه تمام شده می‌گردد.

ساخت سوله‌های جدید با ubm , kspan

امروزه با توسعه یافتن علم و تکنولوژی دیگر روش‌های سنتی و قدیمی پاسخگوی نیازهای کنونی نمی‌باشند زیرا رقابت در دو زمینه قیمت و سرعت ساخت از بسیار زیاد شده و از اهمیت ویژه‌ای بر خوردارند، به همین دلیل هم اکنون روش‌های ساخت سوله نیز تغییر کرده و از دستگاه‌هایی نظیر UBM و KSPAN (یو بی ام و کی اس پن) استفاده می‌شود که سرعت ساخت را تا حداقل ۵ برابر افزایش می‌دهند و قیمت تمام شده سازه را به میزان حداقل ۵۰ درصد کاهش می‌دهند. سازه‌ها بصورت ضد زله بوده چون بسیار سبک می‌باشند و در مقابل سرعت باد تا بیش از ۱۲۰ کیلومتر بر ساعت مقاوم هستند؛ همچنین به دلیل داشتن شیارهای متعدد بر روی سطح خود جریان هوا به عنوان یک پوشش عایق در آنها عمل می‌کند. البته در مناطق بسیار سرد نظیر سیبری یا مناطق بسیار گرم می‌توان از پوشش‌های پلی اورتان برای عایق بندی بیشتر استفاده نمود. این سازه‌ها بر روی یک فونداسیون سبک قابل اجرا هستند همچنین نیازی به جوشکاری ندارند.

نحوه ساخت سوله با این روش (kspan , ubm)

دستگاه‌های ubm , kspan در اصل یک نوع رل فرمینگ می‌باشند، برای ساخت سوله ابتدا ورق وارد دستگاه می‌شود سپس طی فرایندی از بین یکسری غلتک عبور می‌کند که این امر سبب می‌گردد تا به ورق شکل و فرمی دلخواه داده شود. جهت ساخت سوله با دهانه‌های مختلف این تنظیمات قابل تغییر می‌باشند. سپس ورقهای شکل داده شده توسط یک ماشین کوچک به نام سیمر (seamer) درهم دوخته می‌شوند تا دیگر نیازی به جوشکاری نباشد و همچنین قدرت و استحکام سازه را به میزان زیادی افزایش می‌دهد.


کلیاتی در ارتباط با #سوله:
*این سازه‌ها برای کاربری صنعتی و تولیدی مورد استفاده قرار می‌گیرند. (نشریه 325)
*به قاب‌های با مقطع متغییر سوله گفته می‌شود. (در انگلیسی تحت عنوان Gable)
*به علت نیاز به فضای زیاد، فاصله ستون‌ها تا حد امکان زیاد در نظر گرفته می‌شود.

*این قاب‌ها معمولاً بصورت یک طبقه مورد استفاده قرار می‌گیرند.
*با توجه به رفتار متقارن این سازه‌ها، در اغلب موارد می‌توان آنها را بصورت دو بعدی مدلسازی نمود.
* به سبب سبک بودن قاب، معمولاً بارهای باد، برف و جرثقیل در صورت وجود، حاکم هستند.
*اسکلت این سازه‌ها، از فولاد نورد شده گرم یا سرد ساخته می‌شود.

*شیب سوله معمولاً 20% در نظر گرفته می‌شود.
*معمولاً ستون بصورت غیرمنشوری اجرا می‌شود، در قسمت پایین که اتصال آن با زمین مفصلی است، به کمترین ممان اینرسی و در بالا که بیشترین لنگر وجود دارد به ممان اینرسی بالایی نیاز داریم.

* سوله در جهت طولی دارای اتصالات مفصلی بوده و برای مقابله با نیروهای جانبی در این جهت بایستی از مهاربند استفاده شود.
* مقطع مهاربند معمولاً میلگرد یا کابل است.

منبع: @AlirezaeiChannel


سوله: به سازه های فی شیب دار که بر اساس محاسبات فنی خاص طراحی و ساخته می شوند سوله گویند. از این نوع سازه ها در کارخانه ها ، انبارها ، آ شیا نه ها ی هواپیما ، مرغداری ها ،سالن های ورزشی ، فروشگاههای بزرگ ، تعمیر گاهها و . . . استفاده می شود . 

سوله از اجزای زیر تشکیل شده است : 1- ستون  2- رفتر(فریم ) 3 - پرلین ( پروفیل Z و Cو 4- استرات 5- بادبند 6-سگراد (میل مهار ) 7- نبشی سینه بند 8- سایه بان 9-ستون وال پست 10 - پیچ و مهره . 
سوله به اشکال مختلفی طراحی و ساخته می شود .

سوله،اسکلت فی،سازه فی،سوله سازی،ساخت سوله 

 دهانه سوله ( فاصله آکس تا آکس)  سوله با ستون وسط مشترک

دهانه سوله ( فاصله آکس تا آکس)

سوله با ستون وسط مشترک

 سوله با ستون های وسط مشترک
             سوله قوسی

سوله با ستون های وسط مشترک

سوله قوسی

 سوله تک شیب متصل به ساختمان (لینتو)  سوله با دهانه های مشترک

سوله تک شیب متصل به ساختمان (لینتو)

سوله با دهانه های مشترک

 سوله با دهانه های مشترک  سوله با دهانه های مشترک

سوله با دهانه های مشترک

سوله با دهانه های مشترک

 سوله تک شیب  سوله تک شیب با ستون وسط

سوله تک شیب

سوله تک شیب با ستون وسط

 سوله تک شیب با ستون های وسط مشترک  

سوله تک شیب با ستون های وسط مشترک

 

   
   
   
   

  در طراحی و ساخت سوله فاکتورهای مهمی دخیل هستتد که در ذیل به آ نها اشاره می کنیم : 
1- ارتفاع کنار ( از بیرون ) .
2- دهانه سوله ( فاصله آکس تا آکس ) ستونها . 
3- طول سوله ( تعداد قابهای طولی در نظر گرفته شده ) .
4- آیا در طراحی و ساخت سوله ، جراثقال سقفی در نظر گرفته می شود یا خیر ؟ در صورت مثبت بودن ، بار دینامیکی جراثقال چقدر است ؟ 
5- بار برف .
6- بار باد .
7- نیروی زله .
8- مقاومت خاک منطقه ی مورد نظر جهت نصب سوله .
9- پوشش مورد نظر سقف .

برچسب ها:

سوله | ساخت سوله | سوله سازی

 


چه سازه های در SAP2000 قابل تحلیل و یا طراحی می باشد؟
· ساختمان های فولادی و بتنی متداول,
· خرپا ها، پایپرک ,
· سوله و سازه های صنعتی,
· انواع جرثقیل,
· انواع دال ها و پوسته های بتنی,
· سازه های سرد نورد فولادی,
· پل ها و سازه های تحت بار متحرک,
· مخازن فولادی و بتنی هوایی و مدفون,
· سازه های فضا کار,
· دکل های مخابراتی خود ایستا و مهاری,
· انواع پایه ها و نگهدارنده های تابلو,
· سازه های دارای جداساز لرزه ای,
· سازه های دارای میراگر ,
· دیوار حایل,
· و.


تدریس و آموزش تحلیل و طراحی پل ها فولادی 

 پل های بتنی توسط نرم افزار قدرتمند CSI Bridge 

 بر اساس آیین نامه های پل سازی AASHTO و CALTRANS

مدرس: علیرضا خویه
کارشناسی ارشد مهندسی زله - دانشگاه خواجه نصیرالدین طوسی
آموزش محاسبات دستی پل سازی
بر اساس نشریات داخلی - آیین نامه های AASHTO و CALTRANS
تحلیل و طراحی خطی و غیرخطی- استاتیکی و دینامیکی

دانلود رایگان فیلم آموزشی برای تحلیل پوش آور ( push over )
 
فایل پیوست آموزش روش بار افزون یا پوش آور میباشد که توسط خانم مهندس نرگس توفیقی دستیار دکتر محمد قاسم وتر جهت استفاده در دروس بهسازی لرزه ای سازه ها و طراحی لرزه ای سازه ها  بر اساس عملکرد و برای دانشجویان تحصیلات تکمیلی (ارشد ودکتری) در پژوهشگاه بین المللی زله و دانشگاه آزاد  تهیه شده است.
 
برای دانلود فیلم آموزشی برای تحلیل پوش آور(push_over) اینجا کلیک کنید  .
 
 
نمونه دیگر از فیلم آموزشی برای تحلیل پوش آور(push_over) تفکیک شده که لازم است بعد از دانلود با استفاده از نرم افزار Hjsplit یکپارچه شود  .

://drvetr.blogfa.com/

آموزش خصوصی ایتبس Etabs


دانلود رایگان فیلم آموزشی CSiBridge 2013

برای دانلود روی لینکهای زیر کلیک کنید.


CSiBridge_-_01_Introductory_Tutorial.mp4 23-Jul-2013 17:43 52M  

CSiBridge_-_02_Navigating_the_Interface.mp4 23-Jul-2013 17:43 9.5M  

CSiBridge_-_03_Design_of_Steel_Girder_Bridges.mp4 06-Aug-2013 :01 33M  

CSiBridge_-_04_Design_of_Precast_Concrete_Composite_Girder_Bridges.mp4 23-Jul-2013 17:44 40M  

CSiBridge_-_05_Design_of_Prestressed_Concrete_Box_Girders.mp4 23-Jul-2013 17:44 19M  

CSiBridge_-_06_Automated_Seismic_Design.mp4 23-Jul-2013 17:44 63M  

CSiBridge_-_07_Staged_Analysis.mp4 23-Jul-2013 17:43 55M  

CSiBridge_-_08_Dynamic_Vehicle_Loading.mp4 23-Jul-2013 17:43 17M  

CSiBridge_-_09_CSiLoadOptimizer.mp4 23-Jul-2013 17:43 25M  

CSiBridge_-_10_Load_Rating_Factors.mp4 23-Jul-2013 17:4




تدریس خصوصی SAP2000
تحلیل و طراحی ساختمان

  • انجام پروژه های sap2000


دانلود رایگان فیلم آموزشی نرم افزار SAP2000 

برای دانلود روی لینکهای زیر کلیک کنید.

SAP2000_-_01_Introductory_Tutorial.mp4 23-Jul-2013 17:43 45M  
SAP2000_-_02_Select_Commands.mp4 23-Jul-2013 17:43 8.5M  
SAP2000_-_03_Draw_Commands.mp4 23-Jul-2013 17:43 10M  
SAP2000_-_04_Mass_and_Modal_Analysis.mp4 23-Jul-2013 17:43 8.1M  
SAP2000_-_05_P-Delta_Analysis.mp4 23-Jul-2013 17:43 14M  
SAP2000_-_06_Nonprismatic_Sections.mp4 23-Jul-2013 17:43 7.9M  
SAP2000_-_07_Interactive_Database_Editing.mp4 23-Jul-2013 17:43 12M  
SAP2000_-_08_Area_Edge_Constraints.mp4 23-Jul-2013 17:44 4.9M  
SAP2000_-_09_Tension-only_Bracing.mp4 23-Jul-2013 17:43 6.5M  
SAP2000_-_10_Response_Spectrum_Analysis.mp4 23-Jul-2013 17:43 9.2M  
SAP2000_-_11_Modal_Time_History_Analysis.mp4 23-Jul-2013 17:43 19M  
SAP2000_-_12_Section_Designer.mp4 23-Jul-2013 17:44 24M  
SAP2000_-_13_Cardinal_Points.mp4 23-Jul-2013 17:43 12M  
SAP2000_-_14_Displaying_Tabular_Data.mp4 26-Sep-2013 :41 17M  
SAP2000_-_15_Creating_Reports.mp4 07-Oct-2013 17:47 21M  
SAP2000_-_16_Cable_Objects.mp4 23-Jul-2013 17:44 28M  
SAP2000_-_17_Tendons.mp4 23-Jul-2013 17:43 14M  
SAP2000_-__Gap_Elements.mp4 23-Jul-2013 17:43 24M  
SAP2000_-_19_Nonlinear_Staged_Construction.mp4 23-Jul-2013 17:43 11M  
SAP2000_-_20_Nonlinear_Shear_Walls.mp4 23-Jul-2013 17:43 40M  
SAP2000_-_21_Static_Pushover_Analysis.mp4 23-Jul-2013 17:44 16M  
SAP2000_-_22_Power_Spectral_Density.mp4 23-Jul-2013 17:44 M  
SAP2000_-_23_Wave_Loading.mp4 -Sep-2013 :40 9.5M  
SAP2000_-_24_Model_Alive.mp4 23-Jul-2013 17:43 6.7M  
SAP2000_-_25_Open_Application_Programming_Interface.mp4 23-Jul-2013 17:43 21M  
SAP2000_-_26_CSiLoadOptimizer.mp4 23-Jul-2013 17:44 14M  
SAP2000_-_27_Buckling_Factors_and_Modes.mp4 13-Dec-2013 :19 15M  


تدریس خصوصی SAP2000

تحلیل و طراحی ساختمان

  • انجام پروژه های sap2000


تبلیغات

آخرین ارسال ها

آخرین جستجو ها

باشگاه کوهنوردان ایلام مدرس اینیاگرام سامانه تبلیغات آنلاین لینکی وار app10 پویا کالا آخرین اخبار و مطالب هوانوردی نور بوک دلنوشته های یک انسان... بلاگ میقات مهر خرید و فروش ملک در منطقه ۲۲